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Abstract. An interesting tool for investigating the quantum features of a field theory is the
introduction of compensating fields. For instance, the anomalous divergence of the chiral
current can be calculated in the field–antifield formalism from an extended form of quantum
chromodynamics (QCD) with compensating fields. The interpretation of this procedure from
the bosonized point of view, in the two-dimensional case, depends crucially on the possibility of
defining a bosonized version for the extended theory. We show, by using some recent results on
the soldering of bosonized actions corresponding to chiral fermions, the mapping between bosonic
and fermionic representations of this extended QCD2. In the bosonic formulation the anomalous
divergence of the chiral current shows up from the equations of motion of the compensating fields.

1. Introduction

Compensating fields can be defined as those that enlarge the local symmetry content of an
action in such a way that the original theory is recovered at the unitary gauge. This means
that classically the number of degrees of freedom is not changed by the introduction of a set
of compensating fields as they can be completely removed by the gauge-fixing procedure.
This kind of field space enlargement has been used in a large number of works in the context
of Hamiltonian [1] as well as Lagrangian [2, 3] descriptions of field theories. A fundamental
question arises when we introduce compensating fields: are the corresponding new symmetries
obstructed by quantum effects? Several examples, within a Lagrangian formalism, show that
compensating fields do not add new anomalies [4–6] (in other words, they do not change
the BRST cohomology [7]). It can be shown that this is also the case within Hamiltonian
descriptions [8]. In spite of possible cohomologically trivial contributions to a field theory,
compensating fields are an important tool for extracting information about its quantum features.
Recent examples are those of [5, 6] where a general procedure for calculating anomalous
divergences of global currents in the field–antifield framework was developed. In these articles,
the introduction of compensating fields leads to quantum corrections to the master equation
and therefore to additional terms in the quantum action. These quantum corrections make it
possible to extract the anomalous divergences of Noether currents from the sole imposition of
independence of the vacuum functional with respect to the gauge fixing. These results were
illustrated with quantum chromodynamics (QCD) in four dimensions.

In the present work we would like to explore some consequences of the introduction of
compensating fields in QCD in two spacetime dimensions†. As is well known, field theories

† For a review on QCD2 see [9].
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defined in two dimensions have an interesting particular aspect: a two-dimensional gauge
theory with fermionic matter fields can be mapped into a corresponding theory involving only
bosonic fields. The structure and the transformation properties of the bosonized version of
a fermionic gauge theory depend essentially on the form of the coupling to the gauge field.
For example, in standard QCD2, where the gauge field is coupled to the vector matter current,
the corresponding bosonic matter field is gauge invariant. On the other hand, in the chiral
QCD2 case, where the gauge field is coupled to the chiral current, the bosonic matter field
transforms as an element of the gauge group. Therefore, if one tries to look at the introduction
of compensating fields as in [5, 6] from the bosonized point of view, one faces the problem of
how to find the appropriate bosonized version of the theory. Considering the case of a pure
vector coupling, like QCD2, the corresponding bosonized version is well known. However,
the introduction of compensating fields corresponds to coupling an additional pure gauge field
to just one of the chiralities. So, the theory including compensating fields cannot be bosonized
in the same way. We will see that this problem can be solved by generalizing recent results
from [10] on how to solder [11] two chiral fermions, but here with different gauge fields in
each chiral sector.

We will see that when we carefully include in the bosonic formulation the counterterms
that solve the quantum master equation at one-loop order for the fermionic case, we arrive at
a bosonized action where the compensating fields play the role of collective fields as in [3]. It
is interesting to emphasize that it is just these counterterms that make it possible to have the
complete set of symmetries manifest in the bosonized version of the theory. The introduction
of the counterterms also allows us to derive a complete mapping between the chiral currents
and their anomalous divergences in the two formulations of the model. It is natural then to
interpret some of the equations of motion in the gauged WZW model [9, 12] as being just the
bosonic form of the anomalous divergence of the Noether chiral currents.

This work is organized as follows. In section 2 we briefly review the ideas of [5, 6] and
present the corresponding results for the case of QCD2. In section 3 the Abelian version of the
model discussed in section 2 is bosonized using the soldering techniques. A mapping between
the bosonic and fermionic descriptions of the currents and their divergences is also presented.
Section 4 essentially generalizes the results derived in section 3 to the non-Abelian situation.
We devote section 5 to some general comments and concluding remarks.

2. Compensating fields and the gauged chiral symmetry in QCD2

In [6] we have shown that any groupG of rigid internal transformations of a set of fieldsφi ,
i = 1, 2, . . . , n, can be used to enlarge the local symmetry content of an actionS0[φi ]. Local
symmetries are introduced when the group elements are promoted to compensating fields in a
proper way. To show how this works, let us consider that the action ofg ∈ G overφi is

φi
′ = φi ′(φ, g) (2.1)

where a subsequent transformation ofφi
′
(φ, g) under a group elementh can be obtained

directly from φi through the action ofhg. The usual group axioms are assumed, and the
identity transformation is generated by the unity element1 of G. According to (2.1),

φi = φi(φ′, g−1
)
. (2.2)

Writing S0[φi ] with the aid of (2.2) and dropping the primes enables us to obtain an
action S1 = S1[φi, g(x)] with a local set of symmetries which comes from a convenient
left multiplication of the group elements, now taken as local fields. Applying these ideas
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to the Yang–Mills action in two dimensions withG as the group of non-Abelian chiral
transformations,S1[φi, g(x)] can be written as

S1[ψ,ψ,Aµ, g] =
∫

d2x
(− 1

4 Tr(FµνFµν) + iψγµ
(
∂µ − iÃµ

)
ψ
)

(2.3)

where

Ãµ = Ãµ[Aµ, g] = P−Aµ + P+Bµ. (2.4)

In the above expressions,P± = 1
2(1±γ5) are the chiral projectors and the composite field

Bµ = g−1Aµg + ig−1∂µg (2.5)

corresponds to a finite gauge transformation of the Yang–Mills connectionAµ. We can see
thatS1[ψ,ψ,Aµ, g] is invariant under the set of local gauge transformations

δψ = i(η(x)− ε(x)P+)ψ δψ = −iψ(η(x)− ε(x)P−)
δAµ = ∂µη(x) + i[η(x), Aµ] δg = i(gε(x) + [η(x), g]

(2.6)

whereε = εaT a, η = ηaT a take values in theSU(N) algebra, with generatorsT a satisfying
[T a, T b] = if abcT c, tr(T aT b) = δab. We assume here that the connections and the fermions
belong to the fundamental representation ofSU(N).

Transformations (2.6) close in an algebra: [δ1, δ2]φi = δ3φ
i for any field φi =

{ψ, ψ̄, Aµ, g} when the composition rules for the parameters of the transformation are given
by

η3 = i[η1, η2]

ε3 = i
(
[η1, ε2] + [ε1, η2] − [ε1, ε2]

) (2.7)

which shows the semi-direct product character ofSU(N) × SU(N) for the gauge structure
found in (2.6).

In the gaugeg = 1, S1 trivially reduces to the usual Yang–Mills action and the local chiral
symmetry is no longer manifest. Furthermore, forg = 1 + iβ, we obtain

δS1

δβa

∣∣∣∣
β=0

= (DµJ
µ

R

)a
(2.8)

which was the starting point, in [6], for deriving the anomalous divergence of the chiral current
J
µa

R = ψγµT aP+ψ . In (2.8),(
DµJ

µ

R

)a ≡ ∂µJµaR + f abcAbµJ
µc

R . (2.9)

The quantization of such a theory, along the field–antifield formalism†, starts by
constructing the BV action

S = S1 +
∫

d2x
(
iψ∗(c − bP+)ψ − iψ(c − bP−)ψ∗ + Tr{ig∗(gb + [c, g])

+A∗µD
µc + 1

2ic∗[c, c] − 1
2ib∗([b, b] − 2[c, b])}) (2.10)

where the set of fieldsAµ, g, ψ̄ and ψ has been extended to include ghostsc and b
(corresponding to parametersη and ε, respectively) and also antifields (sources of BRST
variations) associated with each field. In (2.10) the brackets represent graded commutators.

† For a review of field antifield quantization see [7, 13].
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As is well known, the BRST variation of any functionalX(φ, φ∗) is given by

sX = (X, S) (2.11)

with S given by (2.10) and the antibrackets defined in such a way that for any two local
functionals of the fields and antifieldsX and Y , (X, Y ) = (∂RX/∂8A)(∂LY/∂8∗A) −
(∂RX/∂8A

∗ )(∂
LY/∂8A). In the above equation and when pertinent, we are using the de Witt

notation of sum over repeated indices and integration over the corresponding intermediary
variables. By construction,S is BRST invariant, but the functional generator withS as the
quantum action will be well defined at one-loop order only if1S = 0 or if S can be extended
to someW = S +M1 such that

sM1 = i1S. (2.12)

In the expressions above1 = (−1)εA+1∂R∂R/∂8A∂8∗A is a potentially singular operator
that must be regularized. If we choose a regularization that keeps the vector symmetry as a
preferential one, we obtain, by using standard procedures, that

1S = − i

4π
Tr
∫

d2x εµν
(
c∂µAν − (c − b)∂µBν

)
(2.13)

whereBµ is given by (2.4) andε01 = −ε10 = 1. We observe that in the QCD2 limit (g→ 1,
b → 0) 1S vanishes identically. Furthermore, we can show that even without that limit,g

andb do not belong to the cohomology at ghost number one and so there exists someM1 that
solves (2.12). To see this, we note from (2.10) and (2.11) that

sg = igb + i[c, b]

sb = −ib2 + i[c, b].
(2.14)

If we representg asg = exp(i3), 3 taking values in theSU(N) algebra, we can show
that

s3 = b + i[3, 1
2b − c] − 1

12[3, [3, b]] + · · · . (2.15)

Expressions (2.13) and (2.15) imply that under the linearized BRST transformations,s13 = b,
s1b = 0, b and3 form a doublet and therefore are absent from the cohomology [14, 15].
Actually, one can verify that

M1 = − i

4π
tr
∫
∂M

dx2 εµν∂µgg
−1Aν − 0[g] (2.16)

where

0[g] = 1

12π
εµνρ tr

∫
M

d3x
(
g−1∂µgg

−1∂νgg
−1∂ρg

)
(2.17)

solves (2.12).0(g) is the Wess–Zumino functional, defined in a three-dimensional manifold
M with boundary∂M representing two-dimensional Minkowski spacetime [12].

To conclude this section, we would like to comment that, although the quantum theory is
not obstructed by gauge anomalies, it presents an anomalous divergence of the chiral current, as
expected. Constructing a path integralZ[J ] by usingW = S1 +M1+ gauge-fixing terms as the
quantum action, we can show that the Batalin–Fradkin theorem that implies the independence
of Z[J ] with respect to the gauge fixingg = 1 + iβ (see (2.2)) leads to〈

δW

δβa

〉
βa=0

=
〈(
DµJ

µ

R

)a
+

1

4π
εµν∂µA

a
ν

〉
βa=0

= 0. (2.18)

This is a non-trivial result that comes naturally from the QCD2 extension presented above.
Observe that the expected values appearing in (2.18) are calculated within the QCD2 sector.
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3. Bosonization and soldering

In this section we will consider some fundamental points related to the bosonization of the
Abelian version of the theory described above. The non-Abelian case will be described in the
next section. DefiningψR/L = P±ψ , we can write the fermionic sector of the Abelianized
version of (2.3) as

SF =
∫

d2x
(
iψ̄Rγ

µ
(
∂µ − iBµ

)
ψR + iψ̄Lγ

µ
(
∂µ − iAµ

)
ψL
)

(3.1a)

≡ S+
F

[
ψ̄R, Bµ,ψR

]
+ S−F

[
ψ̄L, Aµ,ψL

]
(3.1b)

whereBµ = Aµ− ∂µ3 is the Abelian limit of (2.5). Standard bosonization techniques enable
us to derive the bosonized versions of each of the chiral actionsS+

F andS−F , respectively, as†

S+ = 1

4π

∫
d2x [∂+ϕ∂−ϕ + 2B+∂−ϕ + aB+B−] (3.2)

and

S− = 1

4π

∫
d2x [∂+ρ∂−ρ + 2A−∂+ρ + bA+A−]. (3.3)

In the above expressions,a andb are free parameters representing the arbitrariness in the
regularization procedure. Observe that each one of these bosonic actions represents the
fermionic determinant of the corresponding chirality. As is well known, the complete fermionic
determinant corresponding to the complete action (3.1) is not just the product of the two
chiral determinants since there are interference terms. As pointed out in [16], the complete
determinant comes out if we consider the correct Bose symmetrization in the perturbative
calculations. An equivalent calculation of the complete bosonized action can be done by
using soldering techniques [10, 11], which will be described in what follows. If we gauge the
following global symmetries of the actionS±:

δϕ = α δB± = 0

δρ = α δA± = 0
(3.4)

by using the Noether procedure we can see that the action

S = S+ + S− −
∫

d2x

[
E+J− +E−J+ − 1

2π
E+E−

]
(3.5)

with

J+ = 1

2π
(∂+ϕ +B+)

J− = 1

2π
(∂−ρ +A−)

(3.6)

is now invariant under (3.4) withα = α(x) a local parameter, if the transformations of the
soldering gauge fields are given byδE± = ∂±α.

† x± = 1√
2
(x0 ± x1), ∂± = 1√

2
(∂0 ± ∂1), A

± = 1√
2
(A0 ± A1) .
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In (3.5) the interference terms depending inE± are those that solder theϕ andρ sectors
of the theory. By eliminatingE± with the aid of their equations of motion, we arrive at an
effective form ofS given by

S ′ = 1

4π

∫
d2x

[
∂+(ϕ − ρ)∂−(ϕ − ρ) + 2A+∂−(ϕ − ρ)

−2A−∂+(ϕ − ρ) + (a + b − 2)A+A− − 2∂+3∂−(ϕ − ρ)
+∂+3∂−3 +3(a(∂−A+ + ∂+A−)− 2∂+A−)

]
. (3.7)

As one can observe, in (3.7)ϕ andρ combine as the collective field [3]8 = ϕ− ρ and at
the same time the linear combination4 = ϕ + ρ is absent from the theory. If we assume that
the bosonization has been done keeping the vector symmetry as a preferential one, we must
choose the free parameters asa = b = 1. This condition also comes out if we assume that the
invariance under the usualU(1) (Maxwell) transformations is not lost. As a consequence of
(2.6),U(1) gauge invariance is manifest whenδA± = δB± = ∂±η and the other fields remain
invariant. This process is the one that keeps unitarity and presents the correct Bose symmetry,
when a diagrammatic analysis of the bosonization procedure is performed [16]. We see that
(3.7) then reduces to

S ′′ = 1

4π

∫
d2x

[
∂+(8−3)∂−(8−3)− (28−3)(∂−A+ − ∂+A−)

]
. (3.8)

Performing an analysis of the set of gauge transformations that keep (3.8) invariant, we
see that the soldering symmetry is trivially satisfied due to the definition of8. This action
is also invariant under theU(1) gauge transformations, but the chiral symmetry (associated
with the parameterε in the Abelian version of (2.6)) is lost, which is not surprising, once the
invariances presented by the bosonized action must be related to the quantum symmetries of
the corresponding fermionic quantum action. Actually, if we add toS ′ the counterterm

M1 = 1

4π

∫
d2x [3(∂−A+ − ∂+A−)] (3.9)

which is the Abelian limit of (2.16), we see that the total action

W = S ′′ +M1

= 1

4π

∫
d2x

[
∂+(8−3)∂−(8−3)− 2(8−3)(∂−A+ − ∂+A−)

]
(3.10)

besides soldering andU(1) symmetries, is trivially invariant under the chiral symmetry

δ8 = ε δ3 = ε (3.11)

which now also survives the bosonization and soldering processes. It is interesting to note
that not onlyϕ andρ combine in the collective field8 [3], but also that3 and8 themselves
combine in a second collective field̄8 = 8 − 3. In terms of8̄, the bosonized version of
the extended QED2 is identical to the bosonized version of the standard Schwinger model. As
expected, the bosonized version of the theory presents a much simpler form than its fermionic
counterpart, with the action given by (3.1a) added to (3.9).

To conclude this section, we would like to consider some aspects associated with the
mapping between the currents that appear in both descriptions of the model. The matter
current is defined as the object that couples to the vector gauge field in the quantum action

J± ≡ δW

δA∓

∣∣∣∣
3=0

(3.12)
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where the condition3 = 0 fixes the unitary gauge in order to return to the original description
of theory (QED2 in this case). Thus the fermionic currents are mapped in

JF+ =
1√
2
ψ̄(γ0 + γ1)ψ → JB+ = −

1

2π
∂+8

JF− =
1√
2
ψ̄(γ0 − γ1)ψ → JB− =

1

2π
∂−8.

(3.13)

As already commented, the introduction of the compensating fieldg in the fermionic
action made it possible to extract the anomalous divergence of the chiral current. In the non-
Abelian version, this has been given in equation (2.18), the Abelian limit of which, in lightcone
coordinates can be written as

〈∂µJµR 〉 = 〈∂+J
F
− 〉 = −

1

2π
〈∂−A+ − ∂+A−〉 (3.14)

obtained by imposing the independence of the vacuum functional with respect to3. The
corresponding condition applied to the bosonized action (3.10) gives

∂+J
B
− = −

1

2π
(∂−A+ − ∂+A−) (3.15)

which is consistent with the mapping (3.13). Observe that∂−JB+ + ∂+J
B
− vanishes identically,

since the vector current is conserved. This is expected, since the regularization was done by
choosing the vector symmetry as a preferential one. As a final comment, it is interesting to
observe that equation (3.15) is just the equation of motion for the field8 in the usual bosonized
Schwinger model, when one uses the definitions of the bosonic chiral currents. This gives the
interpretation that the equation of motion for the scalar field in the bosonized version of the
Schwinger model is just the bosonized version of the expectation value of the anomalous
divergence of the QED2 axial current.

We will show in the next section that similar features also appear when the corresponding
non-Abelian models are considered.

4. Non-Abelian extension

Consider now the non-Abelian action (2.3). We can write out the bosonized actions that
correspond to each of the chiral sectors as

S+ = 1

4π

∫
d2x tr

[
∂+u
−1∂−u− 2iB+u

−1∂−u + aB+B−
]

+ 0[u]

S− = 1

4π

∫
d2x tr

[
∂+v
−1∂−v − 2iA−v−1∂+v + bA+A−

]− 0[v]
(4.1)

where again the functional0 is defined as in equation (2.17) andu andv are elements of the
SU(N) group.

As in the Abelian case, we solder the two chiralities by introducing the soldering fields
E+, E− and defining a new action

S = S+[u] + S−[v] −
∫

d2x tr

[
E−J+ +E+J− +

1

2π
E+E−

]
(4.2)



8444 R Amorim and N R F Braga

where

J+ = 1

2π

[
u∂+u

−1− iuB+u
−1
]

J− = 1

2π

[
v∂−v−1− ivA−v−1

]
.

(4.3)

The action (4.2) is invariant under the transformations

δAµ = δg = 0

δu = wu
δv = wv
δE± = ∂±w − [E±, w]

(4.4)

since (4.4) imply that

δJ± = − 1

2π
∂±w + [w,J±]. (4.5)

EliminatingE± = −2πJ±with the aid of their equations of motion and introducingh = u−1v,
we write (4.2) as

S ′ = 1

4π

∫
d2x tr

[
∂+h
−1∂−h− 2ig−1A+gh∂−h−1 + 2g−1∂+gh∂−h−1

−2iA−h−1∂+h + (a + b)A+A− − iaA+g∂−g−1 + ia∂+gg
−1A−

+a∂+g
−1∂−g + 2g−1A+ghA−h−1− 2ig−1∂+ghA−h−1

]− 0[h]. (4.6)

Again as in the Abelian model, vector symmetry and unitarity are preserved fora = b = 1,
which is the choice we are going to assume.

The quantum action will also involve the countertermM1 of equation (2.16). If we
introduce the new fieldG = gh we find

W = S ′ +M1 = 1

4π

∫
d2x tr

[
∂+G

−1∂−G− 2iA+G∂−G−1

−2iA−G−1∂+G− 2A+GA−G−1 + 2A+A−
]− 0[G] (4.7)

that has the same form as the bosonized version of the QCD2 action. So, we see that the
compensating fieldg also shows up in the bosonized non-Abelian case as a collective field.
This of course was only possible due to the perfect matching betweenS ′ andM1.

In order to find the correct mapping among the fermionic and bosonic currents we recall
that the non-Abelian version of the definition (3.12) is

J a± =
δW

δAa∓

∣∣∣∣
g=1
. (4.8)

This corresponds in the fermionic formulation to the trivial non-Abelian version of
equation (3.13) and in the bosonized formulation, using the quantum actionW of equation (4.7);
to

J+ ≡ J a+ T a =
1

2π

(−ih−1∂+h− h−1A+h +A+
)

J− ≡ J a−T a =
1

2π

(−ih∂−h−1− hA−h−1 +A−
)
.

(4.9)
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Note that, differently from the fermionic case, the current involves the gauge field itself, which
is a consequence of the self-interaction presented by the non-Abelian model.

Now, in order to extract the result corresponding to (2.18), we choose

G = (1 + iβ)h (4.10)

with β = βaT a small. At this gauge we find

δ

δβa
W

∣∣∣∣
β=0

= (D+J−)a − 1

2π
(∂+A

a
− − ∂−Aa+). (4.11)

Therefore, independence of the theory with respect toβ gives

(D+J−) = − 1

2π
(∂−A+ − ∂+A−) (4.12)

which is the expected result for the anomalous divergency of the chiral current in QCD2,
reproduced here in the bosonized formulation.

5. Conclusions

We have shown in this work how to find a bosonization scheme compatible with the introduction
of compensating fields in QCD2. The mapping between the matter currents in the fermionic
and bosonic formulations was defined in an unambiguous way, by looking at the coupling to the
gauge field. We have seen that the bosonic currents involve a non-trivial gauge-field-dependent
contribution that is not present in the fermionic description.

Only by including in the bosonic formulation the counterterm that comes from the master
equation at one-loop order in the fermionic description do we have the same set of symmetries
in both cases. At this point the fact that this counterterm does not depend on fermionic variables
and therefore does not need to be bosonized is crucial. Also only by the inclusion of those
quantum corrections to the action can the anomalous divergence of the bosonized chiral current
be properly derived from the equations of motion of the compensating fields.
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